
DistriNet

Philippe De Ryck
philippe.deryck@cs.kuleuven.be

HTML5 Security

DistriNet

Fast Evolution of the Web

Extension of client-side platform

HTML5 brings a lot of new features

• Media elements, extended forms, custom
handlers, offline applications …

Communication between browsing contexts

Cross-origin communication

Several APIs offer client-side storage

Access to system / device properties

DistriNet

Fast (In)Security of the Web?

Exciting new extensions

Potentially very security-sensitive operations

• (Location) Tracking, stealing local data, …

• Example: Accelerometer keyloggers

Covered by numerous separate specs

• Potential cross-spec issues/inconsistencies

Specs aim to be secure-by-design

But are they?

DistriNet

Security Analysis of Web Standards

4

DistriNet

Analysis of the specifications

5

A Security Analysis of Next
Generation Web Standards

Commissioned by European Network and
Information Security Agency (ENISA)

Performed by DistriNet Research Group

Full report available at
http://www.enisa.europa.eu/html5

DistriNet

W3C specifications in scope

HTML 5 specification

Cross-domain
communication

XML Http Request levels 1
and 2

Uniform Messaging Policy

Cross-Origin Resource
Sharing

Inter-window
communication

HTML5 Web Messaging

Media
Media Capture API

Client-side storage
Web Storage

Device access
Geolocation API
Specification

System Information API

Permissions for Device API
Access

Device API Privacy
Requirements

6

DistriNet

Methodology

7

Iterative and repeatable process

Applied to 13 specifications in scope

1000+ pages of specification!

Analysis driven by four security questions

Results were captured in three steps

Specification summary

Analysis result of specification in isolation

Cross-specification analysis results

DistriNet

Scope

8

Focus on newly introduced features

No specific focus for classic issues

• E.g. XSS vectors, session management

• Included when relevant for new features

Already extensive work
on XSS attack vectors

• See html5sec.org

DistriNet

Four security questions

9

SQ1: Are the security-relevant aspects of the newly introduced
capabilities well-defined and secure?

privacy problems, unprotected features, …

SQ2: Do the new specifications violate isolation properties
between origins or restricted contexts?

sandboxes or private browsing mode

SQ3: Is the new specification consistent with other
specifications?

Permission management, ways to access information, …

SQ4: How do the security measures of the specification rely on
the user making correct security decisions?

which decisions does the user have to make

DistriNet

3-step analysis

10

Step 1: Security-focused study of the specification in
isolation:

Capabilities: enlisting functional capabilities offered by the spec
User Involvement: how and when is the user involved in
granting access
Security/privacy considerations: both explicit and implicit
considerations

Step 2: Identification of specification-specific threats and
underspecified behavior

Step 3: identification of cross-specification issues:
Inconsistencies between the specifications
Interaction of features across specifications

DistriNet

Analysis results

11

Well-defined /
Secure

Isolation
Properties

Consistency
User

Involvement

HTML5 8 3 2 2

Web Messaging 1 2

XMLHttpRequest 1 + 2 1

CORS 2 1

UMP

Web Storage 3 1 1

Geolocation API 5 1 1 1

Media Capture API 3

System Information API 3 1 1 2

Widgets - Digital Signatures 2

Widgets - Access Req Policy 3 1

Total 25 8 10 8

DistriNet

Key Observations

12

Overall, specs are secure-by-design

Security of legacy applications
Generally well maintained

Corner cases violate legacy security

Underspecified behavior
Spec is too open, too vague

Allows diverging and insecure
implementations

DistriNet

Key Observations

13

Restricted contexts

Sandboxed document / Private Browsing

Specifications do not account for this

Permission systems

Several specifications use permissions

Multiple different permission systems

Heavily dependent on user for security

DistriNet

Conclusion

14

Tons of new features will become available
to third-party JavaScript
Analysis results

Overal quality of the specification is quite OK
Limited number of threats identified
Lack consistency in permission management,

user consent
Underspecification in restricted contexts

Only coarse-grained control over available
APIs

DistriNet

Next steps

15

Follow up on issues and new spec
developments at W3C and on mailinglists

Translate knowledge in security
guidelines for developers and website
owners

Evaluating the browser compliance
towards the specifications

DistriNet

More info…

16

A Security Analysis of Next
Generation Web Standards

Full report available at the ENISA:
http://www.enisa.europa.eu/html5

DistriNet

HTML5 Security Up Close

17

DistriNet

Goals of this session

18

Glimpse of upcoming HTML5 technology

Newly available client-side functionality
Learn how they work

Understand the security consequences

Best practices / Security guidelines

Both for new and existing applications

Newly proposed security features
Learn how to protect your site

DistriNet

Security Policies
(CSP, Do-Not-Track, X-Frame-Options)

Overview of Technologies

19

Forms
(HTML5)

Window
Client-side Communication

(Web Messaging)

Media Content
(Media Capture API)

Sensor APIs
(Sysinfo API, Geolocation, …)

Client-side Storage
(Web Storage, IndexedDB,

Web SQL database, File API)

Client/Server Communication
(CORS, UMP, XHR 1+2)

Sandbox
(HTML5)

Media Content
(HTML5, HTML Media

Capture)

DistriNet

On the menu …

20

Basic Web Security Concepts

HTML5 Forms

Cross-origin Communication

Messaging between Contexts

Storage APIs

Content Security Policy

HTML5 Sandboxing

X-Frame Options

DistriNet

Basic Web Security Concepts

21

Recommended read: “The Tangled Web”

Same Origin Policy

Isolates content from different origins within
the browser

Cornerstone for script security

Can differ based on type of access/content

• E.g. Scripts are included within context of
document that includes it

DistriNet

Basic Web Security Concepts

22

Origin A

Origin B (iframe)

Origin C

Origin B (script)

<iframe src=“originB” /> <script src=“originB” />

DistriNet

Basic Web Security Concepts

23

Script inclusion

Scripts become part of including document

Script tags are directly executed

• Access to parsed data (e.g. vars or functions)

• No access to source

Example to circumvent: JSONP

• Request JSON data with function call

• Server responds with data

DistriNet

Notation Style

29/02/2012 24

Best Practices / Security Guidelines

Level of support in Browsers

Browser versions: Firefox 10, Chrome 16, Opera 11.61, Safari
5.1, Internet Explorer 9, Internet Explorer 8 (max version for Windows XP)

Well to Fully supported

Marginally supported

Not supported

Not supported and no intention to do so

…

DistriNet

Forms

25

DistriNet

New Form Functionality

26

New Form Controls

Mainly input / visualization elements

Security-relevant: keygen

Client-side Form Validation

Out-of-band Form Controls

Place form elements anywhere

Modify form’s properties with attributes

DistriNet

Form Controls - keygen

27

Generates public/private key pair

Public key is submitted, private key is stored

Use case: create client-side certs
<keygen name=“key” keytype=“rsa” />

POST (public key)

Multipart page (key and HTML)

Authenticated SSL request

Generate
cert

Install cert
in browser

DistriNet

Form Controls - keygen

28

Advantages
Useful as additional authentication

Better protection against stealing/phishing

Disadvantages
Stored in browser (not directly accessible)

Does not prevent browser-based attacks

Management issues

Limited support (mainly Firefox)

DistriNet

Form Validation

29

Client-side validation of form elements

Predefined patterns

Custom checks and messages

Triggered by submission or checkValidity()

Overridden by novalidate

Useful to avoid roundtrip to server

Especially on slower networks (e.g. mobile)

DistriNet

Form Validation – Predefined patterns

30

Traditional input types
hidden, text, password, checkbox, radio, file, submit

New input types
search, tel, url, email, datetime, date, month, week,

time, datetime-local, number, range, color

<input type=“month” name=“month” />

<input type=“color” name=“background” />

DistriNet

Form Validation – Required/Patterns

31

Default validation attributes

Required: element must contain a value

Pattern: element must match a regex pattern

Example: Belgian zip codes
<input type=“text” name=“zip”

pattern=“B-[0-9]{4}” required />

DistriNet

Form Validation - Custom

32

Custom validation

Trigger custom validation method

Set custom validation message
<input type=“text” name=“myCustom”

oninput=“validate(this)” required />

function validate(input) {

if(…) {

input.setCustomValidity(“ … custom message … ”);

}

}

DistriNet

Form Validation

33

Client-side Validation

Useful to improve user experience

More efficient than round-trip to server

Easily circumvented by malicious user

Always validate data at the server-side

DistriNet

Out-of-band Form Controls

34

Form elements anywhere in the page

Associated with a form

• Nearest form or form attribute

Supports valid nesting of forms

<input type=“submit” form=“myform” name=“stray”

value=“Guess What I do?” />

<form id=“myform” action=“basic.php” >

…

</form>

DistriNet

Behavior Modifying Attributes

35

Attributes can modify form behavior

Only applies to submission controls

Change action, enctype, method,
novalidate and target

<form action=“basic.php” >

…

<input type=“submit” name=“…” value=“Basic Version” />

<input type=“submit” name=“…”

value=“Advanced Version” formaction=“advanced.php”/>

</form>

DistriNet

Injected Form Controls

36

Attacker can confuse the user

Inject submission control

Change form destination

<form id=“login” action=“basic.php” >

…

<input type=“submit” name=“…” value=“Home Bank” />

</form>

<input type=“submit” form=“login” name=“steal”

value=“Try out the new version!”

formaction=“http://…/steal.php” />

DistriNet

Out-of-band Form Controls

37

Can be used to change form destination

User still needs to click the button

No scripts needed

Solution: appropriate filtering

Prevent injection of <input /> elements

Prevent injection of form attributes

DistriNet

Browser Support

38

Keygen
Form

Validation
Out-of-band

Form Controls

Firefox

Chrome

Opera

Safari

IE

IE (XP)

DistriNet

Cross-Origin Communication

39

DistriNet

Cross-Origin Communication

40

Only possible by means of hacks
Proxy in same origin as host page

Script inclusion (e.g. JSONP)

XMLHttpRequest Level 2
By-design solution for cross-origin comm.

Cross-Origin Resource Sharing

Uniform Messaging Policy

DistriNet

XMLHttpRequest Level 1

41

JavaScript HTTP API

Synchronous and asynchronous

Restricted to same origin as host page

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() { … }

xhr.open(“GET”, “updates.php”);

xhr.send();

DistriNet

XMLHttpRequest Level 2

42

JavaScript HTTP API

Synchronous and asynchronous

Offers cross-origin and anonymous requests

Several security consequences

Carefully designed API

var xhr = new XMLHttpRequest();

var anon = new AnonXMLHttpRequest();

DistriNet

Cross-Origin Resource Sharing

43

Cross-origin requests

Client provides (trustworthy) origin

• Request header: Origin

Server provides authorization information

• Additional response headers

Client (browser) enforces rules

• Grant/deny access to response

DistriNet

Cross-Origin Resource Sharing

44

Simple request

Send to server with Origin header

Process response headers
• Access-Control-Allow-Origin

• Access-Control-Allow-Credentials

• Access-Control-Allow-Expose-Headers

Wildcard allowed for ACAO

• Not if credentials are used

DistriNet

Cross-Origin Resource Sharing

45

Cross-origin XHR request
GET two.com

Origin: http://one.com

Web Server
two.com

Browser
one.com Response

Access-Control-Allow-Origin: http://one.com

Cross-origin XHR request
GET two.com

Origin: http://one.com

Response

DistriNet

Cross-Origin Resource Sharing

46

Example: Cross-Origin GET
Request is sent to server with Origin header

Server responds and disallows access

Client will not give script access to response

Same capabilities as with img element

Security Goal
Do not give an attacker more capabilities than he

has with traditional HTML and JS APIs

DistriNet

Cross-Origin Resource Sharing

47

Example: Cross-Origin PUT/DELETE

Is not possible with any existing API

Should not be possible with CORS!

API addresses this with preflight requests

Security Goal
Do not give an attacker more capabilities than he

has with traditional HTML and JS APIs

DistriNet

Cross-Origin Resource Sharing

48

Complex request

Send preflight before making actual request

Server responds with CORS headers

Client processes headers

• If server allows request: send actual request

• Else: do not send actual request

Preflights maintain security goal

DistriNet

Cross-Origin Resource Sharing

49

Preflight request
Send OPTIONS request to server
• Origin

• Access-Control-Request-Method

• Access-Control-Request-Headers

Process response headers
• Access-Control-Allow-Origin

• Access-Control-Allow-Credentials

• Access-Control-Allow-Expose-Headers

• Access-Control-Allow-Max-Age

• Access-Control-Allow-Methods

• Access-Control-Allow-Headers

DistriNet

Cross-Origin Resource Sharing

50

Cross-origin preflight XHR request
OPTIONS two.com

Origin: http://one.com

Access-Control-Request-Method: PUT

Web Server
two.com

Browser
one.com

Response
Access-Control-Allow-Origin: http://one.com

Access-Control-Allow-Methods: PUT, DELETE

Cross-origin XHR request
PUT two.com

Origin: http://one.com

Response
Access-Control-Allow-Origin: http://one.com

DistriNet

Cross-Origin Resource Sharing

51

Cross-origin preflight XHR request
OPTIONS two.com

Origin: http://one.com

Access-Control-Request-Method: PUT

Web Server
two.com

Browser
one.com

Response

Cross-origin XHR request
PUT two.com

Origin: http://one.com

DistriNet

Cross-Origin Resource Sharing

52

Denied simple requests

Server knows that access will be denied

Processing request is useless / dangerous

If a request is denied, simply return an empty
response without any CORS headers

DistriNet

Cross-Origin Resource Sharing

53

Spec proposes some server-side policies

• Example: login pages

• Example: images, …

Do not allow access to resources that are not
useful to other applications

Publicly accessible resources can always allow
access (using the wildcard *)

DistriNet

Cross-Origin Resource Sharing

54

Spec proposes some server-side policies

• Can already be fetched with the script element

• Currently, a cross-origin redirect adds an origin to
the Origin header

Responses that parse as JavaScript and do not
contain sensitive comments can always allow

access (using the wildcard *)

Always check Origin header (all values)

DistriNet

Cross-Origin Resource Sharing

55

Origin header can have value null

Occurrence: sandboxed context and
proposed for cross-origin redirect

All the CORS algorithms still work with null!

• Use of credentials is allowed

• Server has no origin information

• Pages can always sandbox themselves

Do NOT allow a null value in the Origin header

DistriNet

CORS Usage

56

Other CORS use cases besides XHR

Canvas tainting (HTML5)

• Load cross-origin images without tainting

Media elements metadata (HTML5)

• Access metadata on cross-origin videos

Server-sent events

• Allow cross-origin access to event stream

DistriNet

Uniform Messaging Policy

57

Only uniform requests/responses

No credentials/cookies/referer/origin

If needed, use other authentication or
authorization system (e.g. oAuth)

Access to response is granted by Access-
Control-Allow-Origin: * header

Do not use for non-publicly available
resources

DistriNet

Browser Support

58

XMLHttpRequest
CORS UMP

Level 1 Level 2

Firefox

Chrome

Opera

Safari

IE

IE (XP)

DistriNet

Legacy Applications

59

XHR Level 1 was same origin

Legacy apps never made CORS requests

But now they can, so how about your app …

Ask Facebook

• Facebook Touch used fragment to specify page

• Uses XHR to load that page into the DOM

• Code accepted any URL

Do not depend on implicit same-origin rules for
security (but check your destination domain)

DistriNet

Facebook XHR Vulnerabiltiy

60

Loading content with AJAX

Attacker loads this URL in user’s browser

Cross-origin XHR with Origin header

• Server responds, and allows access

• Facebook reads response and loads it in the page

Attacker now fully controls the user’s
Facebook session

touch.facebook.com/#profile.php

touch.facebook.com/#http://evil.org/xss.php

DistriNet

Messaging between Contexts

61

DistriNet

Messaging Between Contexts

62

Isolation is a good security technique

Same Origin Policy applies

Components require interaction

Web Messaging

Supports sending single messages

Supports establishing a message channel

• Based on port objects

• Follows the object-capability security model

DistriNet

Web Messaging – Single Message

63

Send message to other browsing context

Sender: method of destination window

• Provides message + destination origin + objects

Receiver: event handler on window object

• Receives message + origin information

Origin A Origin B

windowB.postMessage(“some message”, “http://originB”)

DistriNet

Web Messaging – Single Message

64

function receiver(e) {

if (e.origin == 'http://example.com') {

…

}

}

window.addEventListener('message', receiver, false);

var f = document.getElementById("myframe");

f.contentWindow.postMessage('Hello world',

'http://b.example.org/');

Check sender origin before accepting message

DistriNet

Web Messaging – Message Channel

65

Construct channel between two contexts

Two tangled ports, one for each context

• Follows the object-capability model

Origin A

windowB.postMessage(“some message”, “http://originB”, p2)

p1

p2

Origin A

p1.postMessage(“some message”)

p1

p2
Origin B

p2

Origin B

DistriNet

Web Messaging – Message Channel

Game wants to add contact to address book

capability

With permission of social site

passing around capability

Origin A (Social Site)

Origin B (Game) Origin C (Address Book)

p1

p2

66

DistriNet

Web Messaging – Message Channel

Game wants to add contact to address book

capability

With permission of social site

passing around capability

Origin A (Social Site)

Origin B (Game) Origin C (Address Book)

p1

p2p2

p2

67

DistriNet

Web Messaging – Message Channel

Game wants to add contact to address book

capability

With permission of social site

passing around capability

Origin A (Social Site)

Origin B (Game) Origin C (Address Book)

p1

p2p2

p2p2

p2

68

DistriNet

Web Messaging – Message Channel

69

var channel = new MessageChannel();

parent.frames[1].postMessage(“port”,

'http://b.example.org/„,

[channel.port2]);

function receiver(e) { … }

channel.port1.onmessage = receiver;

channel.port1.postMessage(“Hello!”);

DistriNet

Web Messaging

70

Port objects are easily forwarded

Messages contain no origin information

Treat incoming data as untrusted
(validate before use!)

Limit the API available through a port capability

DistriNet

Web Messaging in a Sandbox

71

HTML5 Sandbox

Supports unique origins

Source origin of messages: null

• Any origin can send these messages

Check explicitly for a null source origin

DistriNet

Browser Support

72

Single
Message

Message
Channel

Firefox

Chrome

Opera

Safari

IE

IE (XP)

DistriNet

Storage APIs

73

DistriNet

Storage APIs

74

All techniques have similar properties
JavaScript API

Limited amount of storage
• If supported, user can enlarge the quota

Storage techniques
Simple key/value pairs (Web Storage)

Advanced key-based (Indexed DB)

Client-side SQL (Web SQL DB)

Local file (File API)

DistriNet

Storage APIs – Web Storage

75

Simple key-based storage

Two storage areas:

Local: global area per origin

Session: one area per top-level
context/origin pair

Window.localStorage.setItem(“key”, “value”);

Window.localStorage.getItem(“key”);

DistriNet

Storage APIs – Web Storage

76

Local
Storage

Session
Storage

DistriNet

Storage APIs – Indexed DB

77

Advanced key-based storage
Databases based on keys
• Key-based storage and retrieval (no SQL)

• Support for indexing, looping, in-order retrieval …

One storage area per origin
• Can contain multiple databases

Extensive API
• Asynchronous operations for normal use

• Synchronous API available for use in workers

DistriNet

Storage APIs – Indexed DB

78

// Create new object stores

var osNotes = DB.db.createObjectStore(

DB.ObjectStores.notes, {

keyPath: "id", autoIncrement: true

});

// Create a put request on the objectstore

var rq = os.put(note.toIDBObject());

// Get an index over the name

var index = os.index("byName");

var rq = index.get(name);

rq.onsuccess = function(e) {

callback(e.target.result);

}

DistriNet

Client-side Storage – Web SQL

79

Client-side SQL storage

Extensive SQL support

• Including transactions and rollback

One storage area per origin

• Can contain multiple databases

Extensive API:

• Asynchronous operations for normal use

• Synchronous API available for use in workers

DistriNet

Storage APIs – Web SQL

80

// Create new database

t.executeSql('CREATE TABLE IF NOT EXISTS notes

(…)', [], function(e) { /* success */ },

function(e) { /* error */ });

// Insert a note

var args = [note.name, note.user.id];

t.executeSql('INSERT INTO notes (name, userId)

VALUES (?, ?)', args,

function(t, r) { /* success */ },

function(e) { /* error */ });

DistriNet

Storage APIs – File API

81

Local File Access

Read/write user selected files

Use a virtual file system

• Support for temporary or permanent FS

• One FS per origin (one of each type)

Extensive API

• Asynchronous operations for normal use

• Synchronous API available for use in workers

DistriNet

Storage APIs – File API

82

// Create new filesystem

requestFileSystem(0, 1024 * 1024,

function(fs) { /* success */ });

// Read some file

var reader = new FileReader();

reader.onload = outputFile(f.name);

reader.onerror = error;

reader.readAsText(f);

DistriNet

Storage APIs – Security Considerations

83

Access is bound to origin

Beware of included scripts
(e.g. advertisements, maps, …)

Do not use storage on shared hosting
(i.e. multiple sites within same origin)

Treat locally stored data as untrusted input

Carefully think about sensitivity of stored data

DistriNet

Storage APIs – Browser Support

84

Web
Storage

Indexed
Database

Web SQL
Database

File
API

Firefox

Chrome

Opera

Safari

IE

IE (XP)

DistriNet

Content Security Policy

85

DistriNet

Content Security Policy

86

Prevent potential injection attacks

XSS, Content injection (images, …)

Not the primary line of defense

Policy defines sources of content
• Scripts, images, fonts, stylesheets, …

Currently being developed as a W3C spec

DistriNet

Content Security Policy

Policy Directives
script-src: allowed script sources
object-src: allowed object sources
img-src: allowed image sources (html, css)
media-src: allowed media sources
style-src: allowed CSS sources
frame-src: allowed sources for child frames
font-src: allowed font sources (CSS)
connect-src: allowed remote destinations
default-src: allowed sources for any

87

DistriNet

Content Security Policy

Behavioral constraints

Inline scripts are not allowed to execute

Code evaluation is disabled

Inline CSS is not applied

Constraints can be overridden if needed

Allow inline scripts or CSS: unsafe-inline

Allow code evaluation: unsafe-eval

88

DistriNet

Content Security Policy - Example

SecAppDev’s main page

Same-origin stylesheets / icons / images

Google Analytics

Inline scripts

default-src „self‟;

script-src www.google-analytics.com

„unsafe-inline‟;

89

DistriNet

Content Security Policy - Example

SecAppDev’s main page

Same-origin stylesheets / icons / images

Google Analytics

Same-origin scripts (external files)

default-src „self‟;

script-src „self‟ www.google-analytics.com ;

90

To protect against XSS, limit scripts and objects
and do not allow inline scripts

DistriNet

Content Security Policy

Policy Delivery

Value of HTTP header or meta-tag

• X-Content-Security-Policy

For large policies: refer to remote policy file

• Must be within same origin as page

• Use policy-uri directive

91

DistriNet

Content Security Policy

Policy Deployment

Backwards compatibility

• Older browsers will ignore the policy

• No risks of breaking stuff on older sites

Dry-run before enforcing

• CSP supports a report-only mode

• All violations are reported to URI

• Enables debugging of policy before enforcement

92

DistriNet

Content Security Policy - Report

93

"csp-report": {

"document-uri": "http://example.org/page.html",

"referrer": "http://evil.example.com/haxor.html",

"blocked-uri": "http://evil.example.com/image.png",

"violated-directive": "default-src 'self'",

"original-policy": "default-src 'self';

report-uri http://example.org/csp-report.cgi“

}

DistriNet

Content Security Policy

Testimonial

Rollout on Twitter Mobile [4]

JQuery tests eval function at loading time

• Needed small fix (fixed by default in >=1.5)

Unexpected issues

• JavaScript injection/ content alteration by ISPs

• Fixed by requiring SSL for all users

Now: fully operational

94

DistriNet

Browser Support

95

Content Security Policy

Firefox

Chrome

Opera

Safari

IE

IE (XP)

DistriNet

HTML Sandbox

96

DistriNet

HTML Sandbox

97

Restricts functionality of framed content

Possibility to increase security

Coarse-grained options available

• All enabled by default

• Some can be relaxed with specific keywords

<iframe src=“http://…” sandbox></iframe>

<iframe src=“http://…” sandbox=“allow-scripts”></iframe>

DistriNet

HTML Sandbox

98

Restrictions and relaxations:
• Content has unique origin (allow-same-origin)

• Navigation limited to sandbox and descendants

• Top navigation prevented (allow-top-navigation)

• Plugins are not loaded (e.g. embed, object, …).
User agent may allow user-initiated override

• Seamless can not be used

• Form submission is prevented(allow-forms)

• Scripts are disabled(allow-scripts)

• Automatic features are disabled (allow-scripts)

DistriNet

HTML Sandbox

99

Allows content to break out of sandbox

Otherwise, loading outside of sandbox
compromises main domain

Do not enable allow-scripts and allow-
same-origin (Allows breaking out)

Serve sandboxed content from a separate domain

DistriNet

HTML Sandbox

100

Attacker can sandbox your page

Example: common clickjacking defenses

Disabled by sandboxing page

Use X-Frame-Options instead

Do not rely on script-based security measures
(or ensure a secure non-script mode)

if (top!=self)

top.location.href = self.location.href

DistriNet

X-Frame-Options

101

DistriNet

Clickjacking Attack

Of course you want
to click here!

DistriNet

Clickjacking Attack

But actually you are
clicking here

DistriNet

X-Frame-Options

Restricts framing of pages

Can be used to prevent framing attacks

Header-based policy: X-Frame-Options

Values:

• DENY: no framing allowed

• SAMEORIGIN: only framing within origin

• ALLOW-FROM x: specify sites that are allowed
to frame this page

DistriNet

Browser Support

105

X-Frame-Options

Firefox

Chrome

Opera

Safari

IE

IE (XP)

DistriNet

Conclusion

106

DistriNet

HTML5 Security

107

Exciting developments

Huge extension of client-side functionality

High potential for application creators

• But also attractive target

Follow simple security rules

Only allow the strictly necessary features

Don’t trust anything

DistriNet

Thank You

108

You can always contact me

For further questions

With example uses of new technology

…

DistriNet

Philippe De Ryck
philippe.deryck@cs.kuleuven.be

HTML5 Security

